УДК 517.927.2:621.372.8 DOI 10.21685/2072-3040-2019-3-3

Е. Ю. Смолькин, М. О. Снегур, А. О. Лапич, Л. Ю. Гамаюнова

ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ ДЛЯ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА, ОПИСЫВАЮЩИЕ РАСПРОСТРАНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В РЕГУЛЯРНЫХ НЕОДНОРОДНЫХ ЭКРАНИРОВАННЫХ (ЗАКРЫТЫХ) ВОЛНОВЕДУЩИХ СТРУКТУРАХ КРУГОВОГО СЕЧЕНИЯ С ПОГЛОЩЕНИЕМ¹

Аннотация.

Актуальность и цели. Цель работы — исследование свойств спектра задачи распространения электромагнитных волнах в регулярных неоднородных экранированных (закрытых) волноведущих структурах.

Материалы и методы. Для нахождения решения применен метод операторных пучков и оператор-функций.

Результаты. Изучены спектральные свойства распространяющихся (затухающих) волн в регулярных неоднородных экранированных (закрытых) волноведущих структурах.

Вывод. Предложенный подход может быть обобщен для исследования спектра волн регулярных неоднородных экранированных (закрытых) волноведущих структур произвольного сечения.

Ключевые слова: задача распространения электромагнитных волн, экранированный (закрытый) диэлектрический волновод с круговым сечением, уравнение Максвелла, дифференциальные уравнения, вариационная формулировка, пространства Соболева.

E. Yu. Smol'kin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova

THE STUDY OF NONLINEAR EIGENVALUE PROBLEMS FOR THE MAXWELL EQUATION SYSTEM DESCRIBING THE PROPAGATION OF ELECTROMAGNETIC WAVES IN REGULAR NONUNIFORM SHIELDED (CLOSED) WAVEGUIDE STRUCTURES OF CIRCULAR CROSS SECTION

Abstract.

Background. The purpose of the work is to study the spectrum of the problem of propagating electromagnetic waves in regular inhomogeneous shielded (closed) waveguide structures of circular cross section.

¹ Работа написана при поддержке Совета по грантам Президента Российской Федерации для государственной поддержки молодых российских ученых (грант Президента № МК- 242.2019.1).

[©] Смолькин Е. Ю., Снегур М. О., Лапич А. О., Гамаюнова Л. Ю., 2019. Данная статья доступна по условиям всемирной лицензии Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), которая дает разрешение на неограниченное использование, копирование на любые носители при условии указания авторства, источника и ссылки на лицензию Creative Commons, а также изменений, если таковые имеют место.

Material and methods. To find a solution, the method of operator pencils and operator functions is used.

Results. The spectral properties of propagating (decaying) waves in regular inhomogeneous shielded (closed) waveguide structures are studied.

Conclusions. The proposed approach can be generalized to study the wave spectrum of regular inhomogeneous shielded (closed) waveguide structures of arbitrary cross section.

Keywords: electromagnetic wave propagation problem, shielded (closed) dielectric waveguide with circular cross section, Maxwell equation, differential equations, variational formulation, Sobolev spaces.

Введение

Одним из наиболее важных направлений электродинамики является изучение проблем распространения или затухания электромагнитных волн в различных волноводных структурах. Электрические и магнитные параметры таких структур определяются их физической природой. Однако часто необходимо изучать среды с необычными или специфическими свойствами. Такие структуры могут быть получены с использованием неоднородных и/или нелинейных анизотропных/изотропных материалов с абсорбцией или без нее. Исследование распространения (или затухания) волн в волноводных структурах с неоднородным заполнением приводит к задачам на собственные значения для систем дифференциальных уравнений в частных производных.

Метод операторных пучков является естественным и эффективным методом исследования спектральных свойств таких задач. Благодаря сведению задачи к конкретному операторному пучку можно использовать теорию функционального анализа для изучения спектральных свойств. В работах [1–5] была представлена теория распространения нормальных волн в закрытых (экранированных) волноводах, заполненных однородным диэлектриком.

Однако такая теория не была полностью разработана для гетерогенных волноводных структур без поглощения. В этом случае задача становится намного сложнее. Предлагается подход, основанный на сведении задачи к изучению операторной функции. Это дает нам возможность установить ряд свойств распространяющихся (затухающих) волн: дискретность спектра, распределение постоянных распространения оператор-функции на комплексной плоскости. Кроме того, доказана теорема о двойной полноте системы собственных векторов и связанных с ней векторов операторной функции с конечным дефектом.

1. Постановка задачи

В трехмерное пространство с цилиндрической системой координат Орфг поместили диэлектрический волновод

$$\sum := \{ (\rho, \varphi, z) : r_0 \le \rho \le r, 0 \le \varphi < 2\pi \}$$

с образующей, параллельной оси Oz, и круговым поперечным сечением, как показано на рис. 1. Волновод, покрытый металлом, неограниченно продолжается в направлении z.

Диэлектрическая проницаемость имеет вид $\varepsilon_0 \varepsilon(x)$, где $x = (\rho, \phi)$. Предполагаем также, что $\text{Re } \varepsilon(x) > \varepsilon_0$, $\text{Im } \varepsilon(x) > 0$, $\varepsilon(x)$ — непрерывно диф-

ференцируемая функция в области Σ , т.е. $\varepsilon(x) \in \mathrm{C}^1(\Sigma)$. Магнитная проницаемость $\mu = \mu_0, \varepsilon_0, \mu_0$ — диэлектрическая и магнитная проницаемости вакуума.

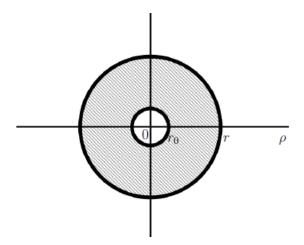


Рис. 1. Геометрия задачи

Для изучения распространения волн в экранированной (закрытой) структуре необходимо найти отличные от нуля решения системы уравнений Максвелла [5]:

$$\begin{cases} \operatorname{rot} \mathbf{H} = -i\omega \varepsilon_0 \varepsilon \mathbf{E}, \\ \operatorname{rot} \mathbf{E} = i\omega \mu_0 \mathbf{H}, \end{cases}$$
 (1)

в виде бегущей волны [6-8]:

$$\mathbf{E} = (E_{\rho}(x)\mathbf{e}_{\rho} + E_{\phi}(x)\mathbf{e}_{\phi} + E_{z}(x)\mathbf{e}_{z})e^{i\gamma z},$$

$$\mathbf{H} = (H_{\rho}(x)\mathbf{e}_{\rho} + H_{\phi}(x)\mathbf{e}_{\phi} + H_{z}(x)\mathbf{e}_{z})e^{i\gamma z},$$
(2)

принимая во внимание следующие граничные условия:

$$\mathbf{E}_{\tau}|_{\rho=r_0} = 0, \ \mathbf{E}_{\tau}|_{\rho=r} = 0.$$
 (3)

Задачу (1)—(3) будем рассматривать как задачу на собственные значения; неизвестный спектральный параметр γ — нормированная постоянная распространения (затухания) волноведущей структуры.

Применив оператор гот к полям Е и Н, получаем

$$\operatorname{rot} \mathbf{H} = \left(\frac{1}{\rho} \frac{\partial H_z}{\partial \varphi} - \frac{\partial H_{\varphi}}{\partial z}\right) \mathbf{e}_{\rho} + \left(\frac{\partial H_{\rho}}{\partial z} - \frac{\partial H_z}{\partial \rho}\right) \mathbf{e}_{\varphi} + \left(\frac{1}{\rho} \frac{\partial \left(\rho H_{\varphi}\right)}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \varphi}\right) \mathbf{e}_{z} =$$

$$= \left(\frac{1}{\rho} \frac{\partial H_z}{\partial \varphi} - i\gamma H_{\varphi}\right) \mathbf{e}_{\rho} + \left(i\gamma H_{\rho} - \frac{\partial H_z}{\partial \rho}\right) \mathbf{e}_{\varphi} + \left(\frac{1}{\rho} \frac{\partial \left(\rho H_{\varphi}\right)}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \varphi}\right) \mathbf{e}_{z}.$$

$$\operatorname{rot} \mathbf{E} = \left(\frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi} - \frac{\partial E_{\varphi}}{\partial z}\right) \mathbf{e}_{\rho} + \left(\frac{\partial E_{\rho}}{\partial z} - \frac{\partial E_{z}}{\partial \rho}\right) \mathbf{e}_{\varphi} + \left(\frac{1}{\rho} \frac{\partial \left(\rho E_{\varphi}\right)}{\partial \rho} - \frac{1}{\rho} \frac{\partial E_{\rho}}{\partial \varphi}\right) \mathbf{e}_{z} =$$

$$= \left(\frac{1}{\rho} \frac{\partial E_{z}}{\partial \varphi} - i\gamma E_{\varphi}\right) \mathbf{e}_{\rho} + \left(i\gamma E_{\rho} - \frac{\partial E_{z}}{\partial \rho}\right) \mathbf{e}_{\varphi} + \left(\frac{1}{\rho} \frac{\partial \left(\rho E_{\varphi}\right)}{\partial \rho} - \frac{1}{\rho} \frac{\partial E_{\rho}}{\partial \varphi}\right) \mathbf{e}_{z}.$$

Перепишем систему уравнений Максвелла (1) в следующем виде:

$$\begin{cases} \frac{i}{\rho} \frac{\partial H_z}{\partial \varphi} + \gamma H_{\varphi} = \omega \varepsilon_0 \varepsilon E_{\varphi}, \\ -i \frac{\partial H_z}{\partial \varphi} - \gamma H_{\varphi} = \omega \varepsilon_0 \varepsilon E_{\varphi}, \\ \frac{i}{\rho} \frac{\partial H_{\varphi}}{\partial \varphi} + \frac{i}{\rho} \frac{\partial (\rho H_{\varphi})}{\partial \varphi} = \omega \varepsilon_0 \varepsilon E_z, \\ -\frac{i}{\rho} \frac{\partial E_z}{\partial \varphi} - \gamma E_{\varphi} = \omega \mu_0 H_{\varphi}, \\ \gamma E_{\varphi} + i \frac{\partial E_z}{\partial x} = \omega \mu_0 H_{\varphi}, \\ \frac{i}{\rho} \frac{\partial E_{\varphi}}{\partial \varphi} - \frac{i}{\rho} \frac{\partial (\rho E_{\varphi})}{\partial \varphi} = \omega \mu_0 H_z, \end{cases}$$

$$(4)$$

выразим функции $E_{
m p}$, $H_{
m p}$, $E_{
m \phi}$, $H_{
m \phi}$ через E_z и H_z :

$$\begin{split} E_{\rho} &= \frac{i}{\rho} \left(\frac{\rho \gamma}{\kappa^2} \frac{\partial E_z}{\partial \rho} + \frac{\omega \mu_0}{\kappa^2} \frac{\partial H_z}{\partial \phi} \right), \ H_{\rho} &= -\frac{i}{\rho} \left(\frac{\rho \gamma}{\kappa^2} \frac{\partial H_z}{\partial \rho} - \frac{\omega \varepsilon_0 \varepsilon}{\kappa^2} \frac{\partial E_z}{\partial \phi} \right), \\ E_{\phi} &= \frac{i}{\rho} \left(\frac{\gamma}{\kappa^2} \frac{\partial E_z}{\partial \phi} - \frac{\rho \omega \mu_0}{\kappa^2} \frac{\partial H_z}{\partial \rho} \right), \ H_{\phi} &= -\frac{i}{\rho} \left(\frac{\gamma}{\kappa^2} \frac{\partial H_z}{\partial \phi} + \frac{\rho \omega \varepsilon_0 \varepsilon}{\kappa^2} \frac{\partial E_z}{\partial \rho} \right), \end{split} \tag{5}$$

где

$$\kappa^2 = \gamma^2 - \kappa_0^2 \epsilon, \quad \kappa_0^2 = \omega^2 \mu_0 \epsilon_0 > 0.$$

Для функций

$$\Pi := E_z(x), \quad \Phi := H_z(x) \tag{6}$$

имеем следующую задачу (задача P) на собственные значения: найти такие $\gamma \in \mathbb{C}$, $\kappa^2 \neq 0$, что существуют нетривиальные решения следующей системы дифференциальных уравнений:

$$\begin{cases} \Delta\Pi - \kappa^2\Pi = -\frac{\gamma^2}{\epsilon\kappa^2} \nabla\Pi\nabla\epsilon - \frac{\gamma}{\kappa^2} J_1(\epsilon, \Phi), \\ \Delta\Phi - \kappa^2\Phi = \frac{\kappa_0^2}{\kappa^2} \nabla\Phi\nabla\epsilon + \frac{\gamma}{\kappa^2} J_2(\epsilon, \Pi), \end{cases}$$
(7)

где

$$J_{1}\left(\varepsilon,\Phi\right) = \frac{\omega\mu_{0}}{\rho\varepsilon}\left(\frac{\partial\varepsilon}{\partial\rho}\frac{\partial\Phi}{\partial\phi} - \frac{\partial\varepsilon}{\partial\phi}\frac{\partial\Phi}{\partial\rho}\right)\text{ if }J_{2}\left(\varepsilon,\Pi\right) = \frac{\omega\varepsilon_{0}}{\rho}\left(\frac{\partial\varepsilon}{\partial\rho}\frac{\partial\Pi}{\partial\phi} - \frac{\partial\varepsilon}{\partial\phi}\frac{\partial\Pi}{\partial\rho}\right);$$

удовлетворяющие краевым условиям на границах r_0 и r

$$\Pi\Big|_{\rho=r_0} = 0, \ \frac{\partial \Phi}{\partial \rho}\Big|_{\rho=r} = 0, \ \Pi\Big|_{\rho=r} = 0, \ \frac{\partial \Phi}{\partial \rho}\Big|_{\rho=r} = 0$$
(8)

и условиям ограниченности поля во всякой конечной области

$$\int_{\Sigma} \left(\left| \nabla \Pi \right|^2 + \left| \nabla \Phi \right|^2 + \left| \Pi \right|^2 + \left| \Phi \right|^2 \right) dx < \infty. \tag{9}$$

После нахождения компонент П и Φ (решение задачи P) мы можем найти оставшиеся компоненты полей по формулам (5). Отысканное этим образом поле ${\bf E}$, ${\bf H}$ соответствует всем условиям начальной задачи. Необходимо дополнительное рассмотрение системы (1) в случае $\gamma^2 = \kappa_0^2 \epsilon$.

2. Вариационное соотношение

Определим пространства Соболева

$$H^1_0(\Sigma) = \left\{ f : f \in H^1(\Sigma), f \big|_{\rho = r_0} = 0, f \big|_{\rho = r} = 0 \right\} \text{ if } H^1(\Sigma)$$

с введенным скалярным произведением и нормой следующим образом:

$$(f,g)_1 = \int_{\Sigma} (\nabla f \nabla \overline{g} + f \overline{g}) dx, \|f\|_1^2 = (f,f)_1.$$

Дадим слабую (вариационную) формулировку задачи (7)–(9). Для этого умножим уравнения системы (7) на произвольные пробные функции $u \in H_0^1(\Sigma)$ и $v \in H^1(\Sigma)$, полагая их пока непрерывно дифференцируемыми в Σ . Применяя формулу Грина [6] для области Σ , получаем

$$\begin{split} \int\limits_{\Sigma} \overline{u} \Delta \Pi dx - \int\limits_{\Sigma} \kappa^2 \Pi \overline{u} dx = \\ &= r \int\limits_{0}^{2\pi} \frac{\partial \Pi}{\partial \rho} \overline{u} \bigg|_{\rho = r} d\varphi - r_0 \int\limits_{0}^{2\pi} \frac{\partial \Pi}{\partial \rho} \overline{u} \bigg|_{\rho = r_0} d\varphi - \int\limits_{\Sigma} \nabla \Pi \nabla \overline{u} dx - \int\limits_{\Sigma} \kappa^2 \Pi \overline{u} dx, \\ &\int\limits_{\Sigma} \overline{v} \Delta \Pi dx - \int\limits_{\Sigma} \kappa^2 \Phi \overline{v} dx = \\ &= r \int\limits_{0}^{2\pi} \frac{\partial \Phi}{\partial \rho} \overline{v} \bigg|_{\rho = r} d\varphi - r_0 \int\limits_{0}^{2\pi} \frac{\partial \Phi}{\partial \rho} \overline{v} \bigg|_{\rho = r_0} d\varphi - \int\limits_{\Sigma} \nabla \Phi \nabla \overline{v} dx - \int\limits_{\Sigma} \kappa^2 \Phi \overline{v} dx. \end{split}$$

40

Далее, учитывая краевые условия (8), получаем

$$\int_{\Sigma} \overline{u} \Delta \Pi dx - \int_{\Sigma} \kappa^2 \Pi \overline{u} dx = -\int_{\Sigma} \nabla \Pi \nabla \overline{u} dx - \int_{\Sigma} \kappa^2 \Pi \overline{u} dx, \tag{10}$$

$$\int_{\Sigma} \overline{v} \Delta \Phi dx - \int_{\Sigma} \kappa^2 \Phi \overline{v} dx = -\int_{\Sigma} \nabla \Phi \nabla \overline{v} dx - \int_{\Sigma} \kappa^2 \Phi \overline{v} dx. \tag{11}$$

В силу того что правые части в уравнениях системы (7) не раны нулю, мы получаем

$$\int_{\Sigma} \overline{u} \Delta \Pi dx - \int_{\Sigma} \kappa^2 \Pi \overline{u} dx = -\int_{\Sigma} \overline{u} \frac{\gamma^2}{\varepsilon \kappa^2} \nabla \Pi \nabla \varepsilon dx - \int_{\Sigma} \frac{\gamma}{\kappa^2} J_1(\varepsilon, \Phi) \overline{u} dx, \tag{12}$$

$$\int_{\Sigma} \overline{v} \Delta \Phi dx - \int_{\Sigma} \kappa^2 \Phi \overline{v} dx = -\int_{\Sigma} \overline{v} \frac{\kappa_0^2}{\kappa^2} \nabla \Phi \nabla \varepsilon dx + \int_{\Sigma} \frac{\gamma}{\kappa^2} J_2(\varepsilon, \Pi) \overline{v} dx.$$
 (13)

Из (10) и (12), (11) и (13) получаем следующие равенства:

$$\int\limits_{\Sigma} \nabla \Pi \nabla \overline{u} dx + \int\limits_{\Sigma} \kappa^2 \Pi \overline{u} dx = \int\limits_{\Sigma} \overline{u} \, \frac{\gamma^2}{\varepsilon \kappa^2} \nabla \Pi \nabla \varepsilon dx + \int\limits_{\Sigma} \frac{\gamma}{\kappa^2} J_1(\varepsilon, \Phi) \overline{u} dx,$$

И

$$\int_{\Sigma} \nabla \Phi \nabla \overline{v} dx + \int_{\Sigma} \kappa^2 \Phi \overline{v} dx = \int_{\Sigma} \overline{v} \frac{\kappa_0^2}{\kappa^2} \nabla \Phi \nabla \varepsilon dx - \int_{\Sigma} \frac{\gamma}{\kappa^2} J_2(\varepsilon, \Pi) \overline{v} dx.$$

Складывая последние выражения, получаем

$$\int_{\Sigma} (\nabla \Pi \nabla \overline{u} + \nabla \Phi \nabla \overline{v}) dx + \int_{\Sigma} \kappa^{2} (\Pi \overline{u} + \Phi \overline{v}) dx =$$

$$= \int_{\Sigma} \frac{\gamma^{2} \overline{u} \nabla \Pi \nabla \varepsilon + \kappa_{0}^{2} \varepsilon \overline{v} \nabla \Phi \nabla \varepsilon}{\varepsilon \kappa^{2}} dx + \int_{\Sigma} \frac{\gamma}{\kappa^{2}} (J_{1}(\varepsilon, \Phi) \overline{u} - J_{2}(\varepsilon, \Pi) \overline{v}) dx.$$

Далее, после элементарных преобразований, получаем вариационное соотношение

$$\gamma^{2} \int_{\Sigma} (\Pi \overline{u} + \Phi \overline{v}) dx + \int_{\Sigma} (\nabla \Pi \nabla \overline{u} + \Pi \overline{u} + \nabla \Phi \nabla \overline{v} + \Phi \overline{v}) dx -$$

$$- \int_{\Sigma} ((\kappa_{0}^{2} \varepsilon + 1) (\Pi \overline{u} + \Phi \overline{v}) - \frac{\overline{u} \nabla \Pi \nabla \varepsilon}{\varepsilon}) dx - \int_{\Sigma} \frac{\kappa_{0}^{2}}{\kappa^{2}} (\overline{u} \nabla \Pi \nabla \varepsilon + \overline{v} \nabla \Phi \nabla \varepsilon) dx -$$

$$- \int_{\Sigma} \frac{\gamma}{\kappa^{2}} (J_{1}(\varepsilon, \Phi) \overline{u} - J_{2}(\varepsilon, \Pi) \overline{v}) dx = 0.$$

$$(14)$$

3. Задача о спектре оператор-функции

Пусть $H = H_0^1(\Sigma) \times H^1(\Sigma)$ — декартово произведение гильбертовых пространств со скалярным произведением и нормой:

$$(\mathbf{u}, \mathbf{v}) = (u_1, v_1)_1 + (u_2, v_2)_1, \|\mathbf{u}\|^2 = \|u_1\|_1^2 + \|u_2\|_1^2; \mathbf{u}, \mathbf{v} \in H,$$

$$\mathbf{u} = (u_1, u_2)^T, \mathbf{v} = (v_1, v_2)^T, u_1, v_1 \in H_0^1(\Sigma), u_2, v_2 \in H^1(\Sigma).$$

Тогда интегралы, входящие в (14), можно рассматривать как полуторалинейный формы над комплексным полем, заданные на H от аргументов

$$\mathbf{u} = (\Pi, \Phi)^T, \mathbf{v} = (u, v)^T.$$

Эти формы определяют [7] некоторые линейные ограниченные операторы:

$$k(\mathbf{u}, \mathbf{v}) := \int_{\Sigma} (\Pi \overline{u} + \Phi \overline{v}) dx = (K \mathbf{u}, \mathbf{v}), \forall \mathbf{v} \in H,$$

$$\tilde{k}(\mathbf{u}, \mathbf{v}) := \int_{\Sigma} (\left(\kappa_0^2 \varepsilon + 1\right) (\Pi \overline{u} + \Phi \overline{v}) - \frac{\overline{u} \nabla \Pi \nabla \varepsilon}{\varepsilon}) dx = (\tilde{K} \mathbf{u}, \mathbf{v}), \forall \mathbf{v} \in H,$$

$$a(\mathbf{u}, \mathbf{v}) := \int_{\Sigma} (\nabla \Pi \nabla \overline{u} + \Pi \overline{u} + \nabla \Phi \nabla \overline{v} + \Phi \overline{v}) dx = (\mathbf{I} \mathbf{u}, \mathbf{v}), \forall \mathbf{v} \in H,$$

$$b_1(\mathbf{u}, \mathbf{v}) := \int_{\Sigma} \frac{\kappa_0^2}{\kappa^2} (\overline{u} \nabla \Pi \nabla \varepsilon + \overline{v} \nabla \Phi \nabla \varepsilon) dx = (B_1(\gamma) \mathbf{u}, \mathbf{v}), \forall \mathbf{v} \in H,$$

$$b_2(\mathbf{u}, \mathbf{v}) := \int_{\Sigma} \frac{\gamma}{\kappa^2} (J_1(\varepsilon, \Phi) \overline{u} - J_2(\varepsilon, \Pi) \overline{v}) dx = (B_2(\gamma) \mathbf{u}, \mathbf{v}), \forall \mathbf{v} \in H.$$

$$(15)$$

Ограниченность формы $a(\mathbf{u}, \mathbf{v})$ очевидна. Ограниченность формы $k(\mathbf{u}, \mathbf{v})$ следует из неравенства Пуанкаре [8]. Ограниченность форм $\tilde{k}(\mathbf{u}, \mathbf{v})$, $b_1(\mathbf{u}, \mathbf{v})$ и $b_2(\mathbf{u}, \mathbf{v})$ показана в работах [9–11].

Теперь вариационную задачу (14) можно записать в операторном виде

$$(N(\gamma)\mathbf{u},\mathbf{v}) = 0, \forall \mathbf{v} \in H$$

или эквивалентно

$$N(\gamma)\mathbf{u} = 0, N(\gamma): H \to H,$$

$$N(\gamma): = \gamma^2 K + I - \tilde{K} - B_1(\gamma) - B_2(\gamma). \tag{16}$$

Уравнение (16) – операторная запись вариационного соотношения (14).

4. Исследования спектра оператор-функции

Приведем, следующие утверждения о свойствах операторов, входящих в оператор-функцию $N(\gamma)$ (доказательство см. в [5, 9–11]):

Лемма 1. Операторы K и $\tilde{K}(\gamma)$ компактные. Оператор K положительно определен, и для его собственных чисел верна асимптотика

$$\lambda_n(K) = O(n^{-1}), n \to \infty.$$

Лемма 2. Оператор-функции $B_1(\gamma)$ и $B_2(\gamma)$ являются компактными и голоморфными в области $\Lambda=\mathbb{C}\setminus\Lambda_0$ и $\Lambda_0:=\left\{\gamma\colon\gamma^2=\kappa_0^2\epsilon\right\}.$

Лемма 3. Существует $\tilde{\gamma} \in \mathbb{R}$ такое, что оператор $N(\tilde{\gamma})$ непрерывно обратим, т.е. резольвентное множество $\varsigma(N) \coloneqq \left\{ \gamma \colon \exists N^{-1}(\gamma) \colon H \to H \right\}$ операторфункции $N(\tilde{\gamma})$ не пусто; $\rho(N) \neq \emptyset$.

Доказательство. Пусть $\gamma \in \mathbb{R}$, $\gamma > 0$ и $\gamma \to +\infty$.

Пусть $N(\gamma) = N_1(\gamma) - N_2(\gamma)$, где $N_1(\gamma) = \gamma^2 K + I - \tilde{K}$, $N_2(\gamma) = B_1(\gamma) + B_2(\gamma)$.

Тогда при достаточно больших γ оператор-функцию $N(\gamma)$ можно представить как возмущение операторного пучка N_1 оператор-функцией N_2 .

Учитывая свойства оператора K, получаем, что найдется такое большое $\tilde{\gamma}$, что

$$\operatorname{Re}(N_1(\tilde{\gamma})\mathbf{u},\mathbf{u}) = \tilde{\gamma}^2(K\mathbf{u},\mathbf{u}) + \|\mathbf{u}\|^2 - \operatorname{Re}(\tilde{K}\mathbf{u},\mathbf{u}) \ge \|\mathbf{u}\|^2$$

для любого ${\bf u}$.

Поэтому $\tilde{\gamma} \in \zeta(N_1)$, где $\zeta(N_1)$ — резольвентное множество пучка (N_1) . Причем, используя теорему 4.1 из [12], имеем оценку

$$\left\|N_1^{-1}\left(\tilde{\gamma}\right)\right\| \leq 1.$$

Выберем $\tilde{\gamma}$ так, чтобы $\|N_2(\overline{\gamma})\| < 1$. Получаем, что существует и ограничен оператор

$$\left(N_1(\widetilde{\gamma})+N_2(\widetilde{\gamma})\right)^{-1}=\left(I+N_1^{-1}(\widetilde{\gamma})N_2(\widetilde{\gamma})\right)^{-1}N_1^{-1}(\widetilde{\gamma}). \ \Box$$

Теорема 1. Оператор-функция $\tilde{N}(\gamma)$: $H \to H$ является ограниченным, голоморфным и фредгольмовым в области Λ .

Доказательство. В области Λ , как следует из леммы 2, операторфункция $\tilde{N}(\gamma)$: $H \to H$ является ограниченной и голоморфной. Операторфункция $N(\gamma)$ фредгольмова как сумма обратимого I и компактных операторов K, \tilde{K}, B_1 и B_2 .

Теорема 2. Спектр оператор-функции $N(\lambda)\colon H\to H$ является дискретным в Λ .

Доказательство. Утверждение теоремы является следствием теоремы 1, леммы 3 и теоремы о голоморфной оператор-функции [12].

Рассмотрим оператор-функцию $N(\gamma)$ в области $\Lambda_{\eta} = \left\{ \gamma : \left| \gamma \right| > \eta \right\}$, где η — произвольное положительное число, такое что $\eta > \max_{x \in \overline{\Omega}} \varepsilon_x$. Причем очевидно, что $\Lambda_{\eta} \subset \Lambda$.

Теорема 3. Система собственных и присоединенных векторов оператор-функции $N(\gamma)$, отвечающих характеристическому числу из множества $\Lambda_{\mathfrak{n}}$, двукратно полна с конечным дефектом в $H \times H$.

Доказательство. Оператор-функцию $N(\gamma)$ будем представлять как возмущением пучка Келдыша $N_1(\gamma) = \gamma^2 K - \tilde{K} + I$, аналитической в Λ_{η} оператор-функцией $N_2(\gamma) = B_1(\gamma) + B_2(\gamma)$ и $N_2(\infty) = 0$. В силу теоремы 1 из [13] система собственных и присоединенных векторов оператор-функции $N(\gamma)$ двукратно полна с конечным дефектом в $H \times H$.

Заключение

Начальная задача о нормальных волнах закрытой волноведущей структуры сведена к краевой задаче для продольных компонент электромагнитного поля в пространствах Соболева. Для нахождения решения применена вариационная формулировка задачи. Доказаны теоремы о дискретности спектра и о распределении характеристических чисел оператор-функции на комплексной плоскости. Рассмотрен вопрос полноты системы собственных и присоединенных векторов оператор-функции. Доказана теорема о двукратной полноте системы собственных и присоединенных векторов оператор-функции с конечным дефектом.

Библиографический список

- 1. Смирнов, Ю. Г. Применение методов операторных пучков в задаче о собственных волнах частично заполненного волновода / Ю. Г. Смирнов // Доклады АН СССР. 1990. № 312 (3). С. 597–599.
- 2. **Смирнов, Ю. Г.** Метод операторных пучков в краевых задачах сопряжения для системы эллиптических уравнений / Ю. Г. Смирнов // Дифференциальные уравнения. 1991. № 27 (1). С. 140–147.
- 3. Делицин, А. Л. Об одном подходе к задаче о полноте системы собственных и присоединенных волн волновода / А. Л. Делицин // Дифференциальные уравнения. 2000. № 36 (5). С. 629–633.
- 4. Делицин, А. Л. О постановке краевых задач для системы уравнений Максвелла в цилиндре и их разрешимости / А. Л. Делицин // Известия РАН. Серия математическая. 2007. № 71 (3). С. 61–112.
- 5. **Смирнов**, **Ю**. **Г**. Математические методы исследования задач электродинамики / Ю. Г. Смирнов. Пенза: Инф.-изд. центр ПензГУ, 2009. 268 с.
- 6. **Costabel, M.** Boundary Integral Operators on Lipschitz Domains: Elementary Results / M. Costabel // SIAM J. Math. Anal. 1988. Vol. 19 (3). P. 613–626.
- 7. **Като**, **Т.** Теория возмущений линейных операторов / Т. Като. Москва : Мир, 1972.
- 8. Adams, R. Sobolev spaces / R. Adams. New York: Academic Press, 1975.
- Смирнов, Ю. Г. О дискретности спектра в задаче о нормальных волнах открытого неоднородного волновода / Ю. Г. Смирнов, Е. Ю. Смолькин // Дифференциальные уравнения. – 2017. – № 53 (10). – С. 1298–1309.

- Смирнов, Ю. Г. Исследование спектра в задаче о нормальных волнах закрытого регулярного неоднородного диэлектрического волновода произвольного сечения / Ю. Г. Смирнов, Е. Ю. Смолькин // Доклады Академии наук. 2018. № 478 (6). С. 1–4.
- 11. Смирнов, Ю. Г. Метод оператор-функций в задаче о нормальных волнах неоднородного волновода / Ю. Г. Смирнов, Е. Ю. Смолькин // Дифференциальные уравнения. 2018. № 54 (9). С. 1196–1206.
- 12. **Гохберг, И. Ц.** Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве / И. Ц. Гохберг, М. Г. Крейн. Москва : Наука, 1965.
- 13. **Радзиевский**, **Г**. **В**. Полнота корневых векторов пучка Келдыша, возмущенного аналитической оператор-функцией $S(\lambda)$ с $S(\infty) = 0$ / Γ . В. Радзиевский // Математические заметки. 1977. № 21 (3). С. 391—398.

References

- Smirnov Yu. G. *Doklady AN SSSR* [Reports of the USSR Academy of Sciences]. 1990, no. 312 (3), pp. 597–599. [In Russian]
- 2. Smirnov Yu. G. *Differentsial'nye uravneniya* [Differential equations]. 1991, no. 27 (1), pp. 140–147. [In Russian]
- 3. Delitsin A. L. *Differentsial'nye uravneniya* [Differential equations]. 2000, no. 36 (5), pp. 629–633. [In Russian]
- 4. Delitsin A. L. *Izvestiya RAN. Seriya matematicheskaya* [Proceedings of the Russian Academy of Sciences. Mathematical series]. 2007, no. 71 (3), pp. 61–112. [In Russian]
- Smirnov Yu. G. Matematicheskie metody issledovaniya zadach elektrodinamiki [Mathematical methods for studying electrodynamics problems]. Penza: Inf.-izd. tsentr PenzGU, 2009, 268 p. [In Russian]
- 6. Costabel M. SIAM J. Math. Anal. 1988, vol. 19 (3), pp. 613-626.
- 7. Kato T. *Teoriya vozmushcheniy lineynykh operatorov* [Perturbation theory of linear operators]. Moscow: Mir, 1972. [In Russian]
- 8. Adams R. Sobolev spaces. New York: Academic Press, 1975.
- 9. Smirnov Yu. G., Smol'kin E. Yu. *Differentsial'nye uravneniya* [Differential equations]. 2017, no. 53 (10), pp. 1298–1309. [In Russian]
- 10. Smirnov Yu. G., Smol'kin E. Yu. *Doklady Akademii nauk* [Reports of the Russian Academy of Sciences]. 2018, no. 478 (6), pp. 1–4. [In Russian]
- 11. Smirnov Yu. G., Smol'kin E. Yu. *Differentsial'nye uravneniya* [Differential equations]. 2018, no. 54 (9), pp. 1196–1206. [In Russian]
- 12. Gokhberg I. Ts., Kreyn M. G. *Vvedenie v teoriyu lineynykh nesamosopryazhennykh operatorov v gil'bertovom prostranstve* [Introduction to the theory of linear non-self-adjoint operators in a Hilbert space]. Moscow: Nauka, 1965. [In Russian]
- 13. Radzievskiy G. V. *Matematicheskie zametki* [Mathematical notes]. 1977, no. 21 (3). S. 391–398. [In Russian]

Смолькин Евгений Юрьевич

кандидат физико-математических наук, доцент, кафедра математики и суперкомпьютерного моделирования, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: e.g.smolkin@hotmail.com

Smol'kin Evgeniy Yur'evich

Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40, Krasnaya street, Penza, Russia)

Снегур Максим Олегович

аспирант, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: snegur.max15@gmail.com

Snegur Maksim Olegovich

Postgraduate student, Penza State University (40, Krasnaya street, Penza, Russia)

Лапич Андрей Олегович

студент, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: lapich.a@yandex.ru

Lapich Andrey Olegovich

Student, Penza State University (40, Krasnaya street, Penza, Russia)

Гамаюнова Людмила Юрьевна

студентка, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: gamayunova.mila@yandex.ru

Gamayunova Lyudmila Yur'evna

Student, Penza State University (40, Krasnaya street, Penza, Russia)

Образец цитирования:

Смолькин, Е. Ю. Исследование нелинейных задач на собственные значения для системы уравнений Максвелла, описывающие распространение электромагнитных волн в регулярных неоднородных экранированных (закрытых) волноведущих структурах кругового сечения с поглощением / Е. Ю. Смолькин, М. О. Снегур, А. О. Лапич, Л. Ю. Гамаюнова // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. — 2019. — № 3 (51). — С. 36—46. — DOI 10.21685/2072-3040-2019-3-3.